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Preface

This report is the second compilation of papers by members of the PATR
group at SRI International and collaborators reporting on ongoing research
on both practical and theoretical issues concerning grammar formalisms.
The current formalism being simultaneously designed, implemented, and
used by the group, PATR-II, is based on unification of directed-graph struc-
tures. The papers presented in this compilation describe techniques for
effictently implementing formalisms that make use of such a concept of uni-
fication. The first two chapters are devoted to the problem of representing
directed graphs as data structures such that unification is efficiently im-
plementable. The final chapter describes a general technique for extending
coniext-free parsing methods to unification-based formalisms. The tech-
niques described in these papers have all been implemented and tested. All
three chapters are versions of papers presented at the Twenty-Third An-
nual Meeting of the Association for Computational Linguistics, held at the
University of Chicago, Chicago, lllinois, during July 8 through 12, 1985,
and appear in the proceedings of that conference.

Research on PATR-II was begun as part of the KLAUS (Knowledge
Learniig And Using System) project at SRI, and was set up with the in-
tention of experimenting with mathematically well-defined alternatives to
the DIALOGIC natural-language processing system. The more theoretical
research was made possible in part by a gift from the System Development
Foundation and was conducted as part of a coordinated research effort with
the Situated Language program at the Center for the Study of Language
and Information, Stanford University.

The PATR group at SRI is a rather liquid group of researchers which
has included, at various times, John Bear, Lauri Karttunen, Paul Martin,
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Fernando Pereira, Jane Robinson, Stan Rosenschein, Stuart Shieber, Susan
Stucky, Mabry Tyson, and Hans Uszkoreit. In addition, the group has
benefitted {rom interaction with many researchers at CSLI, Xerox PARC,
and elsewhere: one of them, Martin Kay, appears in this compilation as
a coauthor; many others are represented in spirit. The research reported
here is a direct result of the aid and interaction of all of these researchers.
However, they should not be held accountable for any errors in the present
work, nor should the opinions expressed herein be construed as indicative
of their personal predilections.



Chapter 1

Structure Sharing with Binary
Trees

This chapter was written by Lauri Karttunen of the Artificial Intelligence
Center, SRI International and the Center for the Study of Language and
Information, Stanford University, and Martin Kay of the Xeroz Palo Allo
Research Cenler,and the Center for the Study of Language and Information,
Stanford University}

Many current interfaces for natural language represent syntactic and
semantic information in the form of directed graphs where attributes cor-
respond to vectors and values to nodes. There is a simple correspondence
between such graphs and the matrix notation linguists traditionally use for

! This research, made possible in part by a gift from the System Development Foundation,
was alsp supported by the Defense Advanced Research Projects Agency under Contracts
N00039-80-C-0575and N00039-84-C-0524 with the Naval Electronic Systems Command.
The views and conclusions contained in this document are those of the author and should
not be interpreted as representative of the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency, or the United States government.

Thanks are due to Fernando Pereira and Stuart Shieber for their comments on earlier
presentations of this material.




feature sets.

cat
b. cat: np

. | number: sg
np agr: l:person: 3rd:|

person

sg 3rd

Figure 1

The standard operation for working with such graphs is unification. The
unification operation succedes only on a pair of compatible graphs, and its
result is a graph containing the information in both contributors. When
a parser applies a syntactic rule, it unifies selected features of input con-
stituents to check constraints and to build a representation for the output
constituent.

1.1 Problem: Proliferation of CAopies

When words are combined to form phrases, unification is not applied to
lexical representations directly because it would result in the lexicon being
changed. When a word is encountered in a text, a copy is made of its
entry, and unification is applied to the copied graph, not the original one.
In fact, unification in a typical parser is always preceded by a copying
operation. Because of nondeterminism in parsing, it is, in general, necessary
to preserve every representation that gets built. The same graph may be
needed again when the parser comes back to pursue some yet unexplored
option. Our experience suggests that the amount of computational effort
that goes into producing these copies is much greater than the cost of
unification itself. It accounts for a significant amount of the total parsing
time. In a sense, most of the copying effort is wasted. Unifications that fail



typically fail for a simple reason. If it were known in advance what aspects
of structures are relevant in a particular case, some effort could be saved
by first considering only the crucial features of the input.

1.2 Solution: Structure Sharing

This paper lays out one strategy that has turned out to be very useful in
eliminating much of the wasted effort. Our version of the basic idea is due
to Martin Kay. It has been implemented in slightly different ways by Kay
in Interlisp-D and by Lauri Karttunen in Zeta Lisp. The basic idea js to
minimize copying by allowing graphs share common parts of their structure.
This version of structure sharing is based on four related ideas:

e Binary trees as a storage device for feature graphs
e “Lazy” copying
o Relative indexing of nodes in the tree

e Strategy for keeping storage trees as balanced as possible

1.3 Binary Trees

Our structure-sharing scheme depends on represented feature sets as binary
trees. A tree consists of cells that have a content field and two pointers
which, if not empty, point to a left and a right cell respectively. For example,
the content of the feature set and the corresponding directed graph in
Figure 1 can be distributed over the cells of a binary tree in the following



way.

person 4
3 | number 5

4 3d | 5

Figure 2

The index of the top node is 1; the two cells below have indices 2 and
3. In general, a node whose index is n may be the parent of cells indexed
2n and 2n + 1. Each cell contains either an atomic value or a set of pairs
that associate attribute names with indices of cells where their value is
stored. The assignment of values to storage cells is arbitrary; it doesn’t
matter which cell stores which value. Here, cell 1 contains the information
that the value of the attribute cat is found in cell 2 and that of agr in cell
3. This is a shight simplification. As we shall shortly see, when the value
in a cell involves a reference to another cell, that reference is encoded as
a relative index. The method of locating the cell that corresponds to a
given index takes advantage of the fact that the tree branches in a binary
fashion. The path to a node can be read off from the binary representation
of its index by starting after the first 1 in this number and taking O to be a
signal for a left turn and 1 as a mark for a right turn. For example, starting
at node 1, node 5 is reached by first going down a left branch and then a
richt branch. This sequence of turns corresponds to the digits 01. Prefixed
with 1, this is the same as the binary representation of 5, namely 101. The
same holds for all indices. Thus the path to node 9 (binary 1001) would
be LEFT-LEFT-RIGHT as signalled by the last three digits following the
initial 1 in the binary numeral (see Figure 6).



1.4 Lazy Copying

The most important advantage is that the scheme minimizes the amount
of copying that has to be done. In general, when a graph is copied, we
duplicate only The operation that replaces copying in this scheme starts by
duplicating the topmost node of the tree that contains it. The rest of the
structure remains the same. Other nodes are modified only if and when
destructive changes are about to happen. For example, assume that we
need another copy of the graph stored in the tree in Figure 2. This can be
obtained by producing a tree which has a different root node, but shares the
rest of the structure with its original. In order to keep track of which tree
actually owns a given node, each node carries a numeral tag that indicates
its parentage. The relationship between the original tree (generation 0)
and its copy (generation 1) is illustrated in Figure 3 where the generation
is separated from the index of a node by a colon.

cat 2 1:1 cat 2
1:0/agr3 ' lagr3
person 4

3:0

number5

Figure 3

If the node that we want to copy is not the topmost node of a tree, we
need to duplicate the nodes along the branch leading to it.

When a tree headed by the copied node has to be changed, we use
the generation tags to minimize the creation of new structure. In general,
all and only the nodes on the branch that lead to the site of a destructive




change or addition need to belong to the same generation as the top node of
the tree. The rest of the structure can consist of old nodes. For example,
suppose we add a new feature, say [gender: fem] to the value of agr in
Figure 3 to yield the feature set in Figure 4.

cat: np

person: 3rd i
agr: | number: sg
gender: fem

Figure 4

Furthermore, suppose that we want the change to affect only the copy
but not the original feature set. In terms of the trees that we have con-
structed for the example in Figure 3, this involves adding one new cell to
the copied structure to hold the value fem, and changing the content of cell
3 by adding the new feature to it.

The modified copy and its relation to the original is shown in Figure 5 .
Note that one half of the structure is shared. The copy contains only three
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new nodes.

2:0 person 4 person 4
number 5 number 5
_ gender 6
4:0[3d o[sg Y
6:1| fem
Figure 5

From the point of view of a process that only needs to find or print
out the value of particular features, it makes no difference that the nodes
containing the values belong to several trees as long as there is no confusion
about the structure.

1.5 Relative Addressing

Accessing an arbitrary cell in-a binary tree consumes time in proportion to
the logarithm of the size of the structure, assuming that cells are reached
by starting at the top node and using the index of the target node as an
address: Another method is to use relative addressing. Relative addresses
encode the shortest path between two nodes in the tree regardless of where
they are are. For example, if we are at node 9 in Figure 6.a below and need
to reach node 11, it is easy to see that it is not necessary to go all the way
up to node 1 and then partially retrace the same path in looking up node
11. Instead, one can stop going upward at the lowest common ancestor,

11




node 2, of nodes 9 and 11 and go down from there.

Figure 6

With respect to node 2, node 11 is in the same position as 7 is with
respect 1. Thus the relative address of cell 11 counted from 9 is 2,7—“two
nodes up, then down as if going to node 7”. In general, relative addresses
are of the form {up,down} where {up) is the number of links to the lowest
common ancestor of the origin and {down) is the relative index of the target
node with respect to it. Sometimes we can just go up or down on the same
branch; for example, the relative address of cell 10 seen from node 2 is
simply 0,6; the path from 8 or @ fo 4 is 1,1. As one might expect, it is
easy to see these relationships if we think of node indices in their binary
representation (see Figure 6.b).. The lowest common ancestor 2 (binary 10)
is designated by the longest common initial substring of @ (binary 1001)
and 11 (binary 1011). The relative index of 11, with respect to, 7 (binary
111}, is the rest of its index with 1 prefixed to the front.

In terms of number of links traversed, relative addresses have no statis-
tical advantage over the simpler method of always starting from the top.
However, they have one important property that is essential for our pur-
poses: relative addresses remain valid even when trees are embedded in
other trees; absolute indices would have to be recalculated. Figure 7 is a

12



recoding of Figure 5 using relative addresses.

cat0,2

- : 3:1| person 1,4
2:0 [ np | 3:0| person1,4 npumber1 5

number1.5 genderG,Z
4:0[3rd | 5:0[ s9 | 6:1] fem
Figure7

1.6 Keeping Trees Balanced

When two feature matrices are unified, the binary trees corresponding to
them have to be combined to form a single tree. New attributes are added
to some of the nodes; other nodes become “pointer nodes,” i.e., their only
content is the relative address of some other node where the real content
is stored. As long as we keep adding nodes to one tree, it is a simple
matter to keep the tree maximally balanced. At any given time, only the
growing fringe of the tree can be incompletely filled. When two trees need
to be combined, it would, of course, be possible to add all the cells from
one tree in a balanced fashion to the other one but that would defeat the
very purpose of using binary trees because it would mean having to copy
almost all of the structure. The only alternative is to embed one of-the
trees in the other one. The resulting tree will not be a balanced one; some
of the branches are much longer than others. Consequently, the average
time needed to look up a value is bound to be worse than in a balanced
tree. For example, suppose that we want to unify a copy of the feature set
in Figure 1b, represented as in Figure 2 but with relative addressing, with

13




a.

a copy of the [eature set in Figure 8.

agr: [gender: fem]] b.
2:0 [gender1,3 |
Figure 8
The resulting feature set and structure are shown in Figure .
cat: np b cat0,2
[ number: sg B
agr: | nerson: 3rd
ender : fem X
person 1,4
number 1,5

gender (0 S

Figure 9

Although the feature set in Figure 9.a is the same as the one represented
by the right half of Figure 7, the structure in Figure 9.b is more complicated
because it is derived by unifying copies of two separate trees, not by simply
acdding more features to a tree, as in Figure 7. In 9.b, a copy of 8.b has
been embedded as node 6 of the host tree. The original indices of both trees
remain unchanged. Because all the addresses are relative; no harm comes
from the fact that indices in the embedded tree no longer correspond to
the true location of the nodes. Absolute indices are not used as addresses
because they change when a tree is embedded. The symbol --> in node 2

14



of the lower tree indicates that the original content of this node—gender
1,3—has been replaced by the address of the cell that jt was unified with,
namely cell 3 in the host tree. In the case at hand, it matters very little
which of the two trees becomes the host for the other. The resulting tree
is about as much out of balance either way. However, when a sequence of
unifications is performed, differences can be very significant. For example,
if A, B, and C are unified with one another, it can make a great deal of
difference, which of the two alternative shapes in Figure 10 is produced as
the final result.

Figure 10

When a choice has to be made as to which of the two trees to embed in
the other, it is important to minimize the length of the longest path in the
resulting tree. To do this at all efficiently requires addtitional infornation
to be stored with each node. According to one simple scheme, this is simply
the length of the shortest path from the node down to a node with a free
left or right pointer. Using this, it is a simple matter to find the shallowest
place in a tree at which to embed another one. If the length of the longet
path is zlso stored, it is also easy to determine which choice of host will give
rise to the shallowest combined tree. Another problem which needs careful

15




attention concerns generation markers. If a pair of trees to be unified
have independent histories, their generation markers will presumably be
incommensurable and those of an embedded tree will therfore not be valide
in the host. Various solutions are possible for this problem. The most
straightforward is relate the histories of all trees at least to the extent of
drawing generation markers from a global pool. In Lisp, for example, the
simplest thing is to let them be CONS cells. :

1.7 Conclusion

We will conclude by comparing our method of structure sharing with two
others that we know of: R. Cohen’s immutable arrays and the idea discussed
in Fernando Pereira’s paper at this meeting. The three alternatives involve
different trade-offs along the space/time continuum. The choice between
them will depend on the particular application they are intended for. No
statistics on parsing are available yet but we hope to have some in the final
version.
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Chapter 2

A Structure-Sharing
Representation for
Unification-Based Grammar
Formalisms

This chapter was written by Fernando Pereira of the Artificial Intelligence
Center, SRI International and the Center for the Study of Language and
Information, Stanford University.!

}This research, made possible in part by a gift from the Systems Development Foun-
dation, was also supported by the Defense Advanced Research Projects Agency under
Contracts N00039-80-C-0575 and NOOC39-84-C-0524 with the Naval Electronic Systems
Command. The views and conclusions contained in this document are those of the
author-and should not be interpreted as representative of the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency, or the Umted
States government, - :

Thanks are due to Stuart Shleber, Lauri Karttunen, and Ray Perrault for their com-
ments on earlier presentations of this material.
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Abstract

This paper describes a structure-sharing method for the representation of
complex phrase types in a parser for PATR-II, a unification-based grammar
formalism.

In parsers for unification-based grammar formalisms, complex phrase
types are derived by incremental refinement of the phrase types defined in
grammar rules and lexical entries. In a naive implementation, a new phrase
type is built by copying older ones and then combining the copies according
to the constraints stated in a grammar rule. The structure-sharing method
was designed to eliminate most such copying; indeed, practical tests suggest
that the use of this technique reduces parsing time by as much as 60%.

The present work is inspired by the structure-sharing method for theo-
rem proving introduced by Boyer and Moore and on the variant of it that
is used in some Prolog implementations.

2.1 Overview

In this paper I describe a method, structure sharing,-for the representa-
tion of complex phrase types in a parser for PATR-II, a unification-based
grammar formalism.

In parsers for unification-based grammar formalisms, complex phrase
types are derived by incremental refinement of the phrase types defined in
grammar rules and lexical entries. In a naive implementation, a new phrase
type is built by copying older ones and then combining the copies according
to the constraints stated in a grammar rule. The structure-sharing method
eliminates most such copying by representing updates to objects {phrase
types) separately from the objects themselves.

The present work is inspired by the structure-sharing method for the-
orem proving introduced by Boyer and Moore [2] and on the variant of it
that is used in some Prolog implementations [20].

18




2.2 Grammars with Unification

The data representation discussed in this paper is applicable, with ‘but
minor changes, to a variety of grammar formalisms based on unification,
such as definite-clause grammars [14], functional-unification grammar [9],
lexical-functional grammar [6] and PATR-II [17]. For the sake of concrete-
ness, however, our discussion will be in terms of the PATR-H formalism.

The basic idea of unification-based grammar formalisms is very sim-
ple. As.with context-free grammars, grammar rules state how phrase types
combine to yield other phrase types. But whereas a context-free grammar
allows only a finite number of predefined atomic phrase types or nonter-
minals, a unification-based grammar will in general define implicitly an
infinity of phrase types

A phrase type is defined by a set of constraints. A grammar rule is a set
of constraints between the type Xy of a phrase and the types X;,..., X, of
its constituents. The rule may be applied to the analysis of a string Sp as
the concatenation of constituents s,,..., s, if and only if the types of the
s; are compatible with the types X; and the constraints in the rule.

Unificalion is the operation that determines whether two types are com-
patible by building the most general type compatible with both.

- If the constraints are equations between attributes of phrase types, as is
the case in PATR-II, two phrase types can be unified whenever they do not
assign distinct values to the same attribute. The unification is then just
the conjunction {set union) of the corresponding sets of constraints [13].

Here is a sample rule, in a simplified version of the PATR-II notation:

Xo — X1 X2: (X, cat) = S
{Xe cat) = VP (2.1)
A Xy agr) = {Xe agr) '
{Xp trans) = {X; trans)
(Xp trans arg;) = (X trans)

This rule may be read asi statfng that a pilrase_ of type Xy can be the
concatenation of a phrase of type X; and a phrase of type X5, provided

19




that the attribute equations of the rule are satisfied if the phrases are
substituted for their types. The equations state that phrases of types Xj,
X1, and X, have categories S, NP, and VP, respectively, that types X;
and X, have the same agreement value, that types X, and X; have the
same translation, and that the first argument of Xy's trans]atxon is the
translation of Xj.

Formally, the expressions of the form {l; -+ i) used in attribute equa-
tions are paths and each I; is a label. :

When all the phrase types in a rule are given constant cal (category)
values by the rule, we can use an abbreviated notation in which the phrase
type variables X; are replaced by their category values and the category-
setting equations are omitted. For example, rule (2.1) may be written as

S — NPVP: (NP agr) = {VP agr)
(S trans) = (VP trans) (2.2)
(S trans arg)) = -{NP trans)

In existing PATR II lmplementatlons phrase types are not actually rep-
resented by their sets of defining equations. Instead, they are represented
by symbolic solutions of the equations in the form of directed acyclic graphs
(dags) with arcs labeled by the attributes used in the equations. Dag nodes
represent the values of attributes and an arc labeled by '/ goes from node m
to node n if and only if, according to the equations, the value represented
by m has n as the value of its ! attribute [13]. ‘ :

A dag node (a,nd by extension a dag) is said to be atomie if it represents
a constant value; complez if it has some outgoing arcs; and a leaf if is is
neither atomic or complex, that is, if it represents an as yef completely
undetermined value. The domarn dom(d) of a complex dag d is the set
of labels on arcs leaving the top node of d. Given a dag d and a label
{ € dom(d) we denote by d/! the subdag of d at the end of the arc labeled
! from the top node of d. By extension, for any path p whose labels are in
the domains of the appropriate subdags, d/p represents the subdag of d at
the end of path p from the root of d.

For uniformity, lexical entries and grammar rules are also represented
by appropriate dags. For example the dag forrule (2.1) is shown in Figure
2.1.

20
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Figure 2.1: Dag Representation of a Rule
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2.3 The Problem

In a chart parser [8] all the intermediate stages of derivations are encoded in
edges, representing either incomplete {active) or complete (passive) phrases.
For PATR-II, each edge contains a dag instance that represents the phrase
type of that edge. The problem we address here is how to encode multiple
dag instances efficiently.

In a chart parser for context-free grammars, the solution is trivial: in-
stances can be represented by the unique internal names (that is, addresses)
of their objects because the information contained in an instance is exactly
the same as that in the original object.

In a parser for PATR-II or any other unification-based formalism, how-
ever, distinct instances of an object will in general specify different values
for attributes left unspecified in the original object. Clearly, the attribute
values specified for one instance are independent of those for another in-
stance of the same object.

One obvious solution is to build new instances by copying the original
object and then updating the copy with the new attribute values. This was
the solution adopted in the first PATR-II parser [17]. The high cost of this
solution both in time spent copying and in space required for the copies
themselves constitutes the principal justification for employing the method
described here.

2.4 Structure Sharing

Structure sharing is based on the observation that an initial object, together
with a list of update records, contains the same information as the object
that results from applying the updates to the initial object. In this way, we
can trade the cost of actually applying the updates (with possible copying
to avoid the destruction of the source object) against the cost of having to
compute the effects of updates when examining the derived object. This
reasoning applies in particular to dag instances that are the result of adding
attribute values to other instances.
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Figure 2.2: Molecule

As in the variant of Boyer and Moore’s method [2] used in Prolog [20],
I shall represent a dag instance by a molecule (see Figure 2.2) consisting of

1. [A pointer to] the initial dag, the instance’s skeleton

2. [A pointer to] a table of updates of the skeleton, the instance’s envi-
ronment.

Environments may contain two kinds of updates: reroutings that replace a
dag node with another dag; arc bindings that add to a node a new outgoing
arc pointing to a dag. Figure 2.3 shows the unification of the dags

I, = [a:z,b:y
I, = [e:[d:¢]]

After unification, the top node of I, is rerouted to I; and the top node of I;
gets an arc binding with label ¢ and a value that is the subdag [d : €] of L.
As we shall see later, any update of a dag represented by a molecule is either
an update of the molecule’s skeleton or an update of a dag {to which the
same reasoning applies) appearing in the molecule’s enviroment. Therefore,
the updates in a2 molecule’s environment are always shown in figures tagged
by a boxed number identifying the affected node in the molecule’s skeleton.
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The choice of which dag is rerouted and which one gets arc bindings is
arbitrary.

For reasons discussed later, the cost of looking up instance node updates
in Boyer and Moore’s environment representation is O{|d|), where |d| is the
length of the derivation (a sequence of resolutions) of the instance. In the
present representation, however, this cost is only O(log|d|). This better
performance is achieved by particularizing the environment representation
and by splitting the representational scheme into two components: a mem-
ory orgenizelion and a dag representdation.

A dag representation is a way of mapping the mathematical eniily dag
onto a memory. A memory organization is a way of putting together a
memory that has certain properties with respect to lookup, updating and
copying. One can think of the memory organization as the hardware and
the dag representation as the data structure.

2.5 Memory Organization

In practice, random-access memory can be accessed and updated in con-
stant time. However, updates destroy old values, which is obviously unac-
ceptable when dealing with alternative updates of the same data structure.
If we want to keep the old version, we need to copy it first into a sepa-
rate part of memory and change the copy instead. For the normal kind of
memory, copying time is proportional to the size of the object copied.

The present scheme uses another type of memory organization —
virtual-copy arrays — which requires O(log n) time to access or update
an array with highest used index of n, but in which the old contents are
not destroyed by updating. Virtual-copy arrays were developed by David
H. D. Warren [21] as an implementation of extensible arrays for Prolog.

Virtual-copy arrays provide a fully general memory structure: anything
that can be stored in random-access memory can be stored in virtual-copy
arrays, although pointers in machine memory correspond to indexes in a
virtual-copy array. An updating operation takes a virtual-copy array, an
index, and a new value and returns a new virtual-copy array with the new
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Figure 2.4: Virtual-Copy Array

value stored at the given index. An access operation takes an array and an
index, and returns the value at that index.

Basically, virtual-copy arrays are 2*-ary trees for some fixed k¥ > 0.
Define the depth d(n) of a tree node n to be O for the root and d(p)+1ifpis
the parent of n. Each virtual-copy array a has also a positive depth D(a) >
max{d(n) : n is a node of ¢}. A tree node at depth D{a) (necessarily a
leaf) can be either an array element or the special marker L for unassigned
elements. All leaf nodes at depths lower than D(a) are also L, indicating
that no elements have yet been stored in the subarray below the node. With
this arrangement, the array can store at most 2*2(8) elements, numbered 0
through 2%P2(@) — 1, but unused subarrays need not be allocated.

By numbering the 2* daughters of a nonleaf node from 0 to 2¥—1, a path
from ¢’s root to an a,rray element (a leaf at depth D(a)) can be represented
by a sequence ny---n D(,,)_, in which ny is the number of the branch taken
at depth d. This sequence is just the base 2* representation of the index n
of the array element, with ny the most significant digit and np(,) the least
51gn1ﬁcant (Figure 2.4).

When a virtual-copy array a is updated, one of two things may happen.
If the index for the updated element exceeds the maximum for the current
depth (as in the a[8] := g update in Figure 2.5), a new root node is created
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~ for the updated array and the old array becomes the leftmost daughter of
the new root. Other nodes are also created, as appropriate, to reach the
position of the new element. If, on the other hand, the index for the update
js within the range for the current depth, the path from the root to the
element being updated is copied and the old element is replaced in the new
tree by the new element (as in the a2} := h update in Figure 2.5}). This
description assumes that the element being updated has already been set.
If not, the branch to the element may terminate prematurely in a L leaf,
in which case new nodes are created to the required depth and attached to
the appropriate position at the end of the new path from the root.

2.6 Dag Representation

Any dag representation can be implemented with virtual-copy memory in-
stead of random-access memory. I that were done for the original PATR-II
copying implementation, a certain measure of structure sharing would be
achieved.

The present scheme, however, goes well beyond that by using the
method of structure sharing introduced in Section 2.4. As we saw there, an
instance object is represented by a molecule, a pair consisting of a skeleton
dag (from a rule or lexical entry) and an update environment. We shall
now examine the structure of environments.

In a chart parser for PATR-1I, dag instances in the chart fall into two
classes. ' '

Buase fnstances are those associated with edges that are created directly
from lexical entries or rules.

Derived instances occur in edges that result from the combination of a
left and a right parenl edge containing the leff and right parent instances of
the derived instance. The left ancestors of an instance (edge) are its left
parent and that parent’s ancestors, and similarly for right ancestors. I will
assume, for ease of exposition, that a derived instance is always a subdag
of the unification of its right parent with a subdag of its left parent. This
is the case for most common parsing algorithms, although more general
schemes are possible [15].
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a: [0:e, 2:h, 8:g]

a: [0:e, 2:1,8:9]

Figure 2.5: Updating Virtual-Copy Arrays
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If the original Boyer-Moore scheme were used directly, the environment
for a derived instance would consist of pointers to left and right parent in-
stances, as well as a list of the updates needed to build the current instance
from its parents. As noted before, this method requires a worst-case O(|d|)
search to find the updates that result in the current instance.

The present scheme relies on the fact that in the great majority of cases
no instance is both the left and the right ancestor of another instance. I
shall assume for the moment that this is always the case. In Section 2.9
this restriction will be removed.

It is a simple observation about unification that an update of a node of
an instance I is either an update of I’s skeleton or of the value (a subdag
of another instance) of another update of I. If we iterate this reasoning,
it becomes clear that every update is ultimately an update of the skeleton
of a base instance ancestor of I. Since we assumed above that no instance
could occur more than once in I's derivation, we can therefore conclude
that I's environment consists only of updates of nodes in the skeletons of
its base instance ancestors. By numbering the base instances of a derivation
consecutively, we can then represent an environment by an array of frames,
each containing all the updates of the skeleton of a given base instance.

Actually, the environment of an instance I will be a branch environ-
ment containing not only those updates directly relevant to I, but also all
those that are relevant to the instances of I’s particular branch through
the parsing search space.

In the context of a given branch environment, it is then possible to
represent a molecule by a pair consisting of a skeleton and the index of a
frame in the environment. In particular, this representation can be used
for all the values (dags) in updates.

More specifically, the frame of a base instance is an array of update
records indexed by small integers representing the nodes of the instance’s
skeleton. An update record is either a list of arc bindings for distinct arc
labels or a rerouting update. An arc binding is a pair consisting of a label
and a molecule {the value of the arc binding). This represents an addition
of an arc with that label and that value at the given node. A rerouting
update is just a pointer to another molecule; it says that the subdag at
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that node in the updated dag is given by that molecule (rather than by
whatever was in the initial skeleton). :

To see how skeletons and bindings work together to represent a dag,
consider the operation of finding the subdag d/{/; - - - I,,) of dag d. For this
purpose, we use a current skelelon s and a current frame f, given initially
by the skeleton and frame of the molecule representing d. Now assume
that the current skeleton 8 and current frame f correspond to the subdag
d'=df{l; --- k). Tofind df{l; --- L} = d'[l;, we use the following method:

1. If the top node of s has been rerouted in f to a dag v, dereference d'
by setting 8 and f from v and repeating this step; otherwise

2. If the top node of s has an arc labeled by /; with value ¢', the subdag
“at l; is given by the moledule {s', f); otherwise

3. If f contains an arc binding labeled /; for the top node of 8, the subdag
at l; is the value of the binding

If none of these steps can be applied, {/; - -- L} is not a path from the root
in d.

The details of the representation are illustrated by the example in Figure
2.6, which shows the passive edges for the chart analysis of the string ab
according to the sample grammar

S—AB: (Sa)

(S8 = (B)
(Saz) = (Sby)
| (2.3)
A—a: (Auv) = a
B—b: (Buv) = b

For the sake of simplicity, only the subdags corresponding to the explicit
equations in these rules are shown (ie., the cat dag arcs and the rule arcs
0, 1,... are omitted). In the figure, the three nonterminal edges (for phrase
types S, A and B) are labeled by molecules representing the corresponding
dags. The skeleton of each of the three molecules comes from the rule used
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to build the nonterminal. Each molecule points (via a frame index not
shown in the figure) to a frame iz the branch environment. The frames for
the A and B edges contain arc bindings for the top nodes of the respective
skeletons whereas the frame for the S edge reroute nodes 1 and 2 of the §
rule skeleton to the A and B molecules respectively.

2.7 The Unification Algorithm

I shall now give the unification algorithm for two molecules (dags) in the
same branch environment.

We can treat a complex dag d as a partial function from labels to dags
that maps the label on each arc leaving the top node of the dag to the dag
at the end of that arc. This allows us to define the following two operations
between dags:

di\d; = {(I,d)€d,|!¢dom(d;)}
di < ds {(1,d) € d; | I € dom(d:)}

It is clear that dom(d; < d;) = dom(d; < d,).

We also need the notion of dag dereferencing introduced in the last
section. As a side effect of successive unifications, the top node of a dag
may be rerouted fo another dag whose top node will also end up being
rerouted. Dereferencing is the process of following such chains of rerouting
pointers to reach a dag that has not been rerouted.

The unification of dags d, and d; in environment e consists of the fol-
lowing steps:

1. Dereference d; and d;

2. If d, and d; are identical, the unification is immediately successful

3. If d, is a leaf, add to e a rerouting from the top node of d, to ds;
otherwise

4, If d; 1s a leaf, add to e a rerouting from the top node of dp to d;;
otherwise
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5. If d; and d; are complex dags, for each arc (I, d) € d; < d; unify the
dag d with the dag d' of the corresponding arc {I,d') € d; < d;. Each
of those unifications may add new bindings to e. If this unification
of subdags is successful, all the arcs in d; \ d; are are entered in e as
arc bindings for the top node of d; and finally the top node of d, is
rerouted to d,. :

6. If none of the conditions above ‘applies, the unification fails.

To determine whether a dag node is a leaf or complex, both the skeleton
and the frame of the corresponding molecule must be examined. For a
dereferenced molecule, the set of arcs leaving a node is just the union of
the skeleton arcs and the arc bindings for the node. For this to make sense,
the skeleton arcs and arc bindings for any molecule node must be disjoint.
The interested reader will have no difficulty in proving that this property
is preserved by the unification algorithm and therefore all molecules built
from skeletons and empty frames by unification will satisfy it.

2.8 Mapping Dags Onto Virtual-Copy Mem-
ory

As we saw above, any dag or set of dags constructed by the parser is built
from just two kinds of material: (1) frames; (2) pieces of the initial skeletons
from rules and lexical entries. The initial skeletons can be represented
trivially by host language data structures, as they never change. Frames,
though, are always being updated. A new frame is born with the creation of
an instance of a rule or lexical entry when the rule or entry is used in some
parsing step (uses of the same rule or entry in other steps beget their own
frames). A frame is updated when the instance it belongs to participates
in a unification.

During parsing, there are in general several possible ways of continuing
a derivation. These correspond to alternative ways of updating a branch
environment. In abstract terms, on coming to a choice point in the deriva-
tion with n possible continuations, n — 1 copies of the environment are
made, giving n environments — namely, one for each alternative. In fact,
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the use of virtual-copy arrays for environments and frames renders this
copying unnecessary, so each continuation path performs its own updating
of its version of the environment without interfering with the other paths.
Thus, all unchanged portions of the environment are shared.

In fact, derivations as such are not explicit in a chart parser. Instead,
the instance in each edge has its own branch environment, as described
previously. Therefore, when two edges are combined, it is necessary to
merge their environments. The cost of this merge operation is at most the
same as the worst case cost for unification proper (O(|d| log|d|)). However,
in the very common case in which the ranges of frame indices of the two
environments do not overlap, the merge cost is only O(log |d|).

To summarize, we have sharing at two levels: the Boyer-Moore style dag
representation allows derived dag instances to share input data structures
(skeletons), and the virtual-copy ‘array environment representation allows
different branches of the search space to share update records.

2.9 The Renaming Problem

In the foregoing discussion of the structure-sharing method, I assumed that
the left and right ancestors of a derived instance were disjoint. In fact, it
is easy to show that the condition holds whenever the grammar does not
allow empty derived edges. *

In contrast, it is possible to construct a grammar in which an empty
derived edge with dag D is both a left and a right ancestor of another edge
with dag E. Clearly, the two uses of D as an ancestor of E are mutually
independent and the corresponding updates have to be segregated. In other
words, we need two copies of the instance D. By analogy with theorem
proving, I call this the renaming problem.

The current solution is to use real copying to turn the empty edge into
a skeleton, which is then added to the chart. The new skeleton is then used
in the normal fashion to produce multiple instances that are fres of mutual
interference.
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2.10 Implementation

The representation described here has been used in a PATR-II parser im-
plemented in Prolog. Two versions of the parser exist — one using an
Earley-style algorithm related to Earley deduction [15], the other using a
left-corner algorithm.

Preliminary tests of the left-corner algorithm with structure sharing
on various grammars and input have shown parsing times as much as 60%
faster [never less, in fact, than 40% faster] than those achieved by the same
parsing algorithm with structure copying.
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Chapter 3

Using Restriction to Extend
Parsing Algorithms for
Complex-Feature-Based
Formalisms

This chapter was written by Stuart Shieber of the Artificial Intelligence
Center, SR] International and the Center for the Study of Language and
Information, Stanford University.!

' This research has been made possible in part by a gift from the Systems Development
Foundation, and was also supported by the Defense Advanced Research Projects Agency
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views and conclusions contained in this document should not be interpreted as repre-
sentgtive of the official policies, either expressed or implied, of the Defense Research
Projects Agency or the United States government.

The author is indebted to Fernando Pereira and Ray Perrault for their comments on
earlier drafts of this paper.
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Abstract

Grammar formalisms based on the encoding of grammatical information
in complex-valued feature systems enjoy some currency both in linguistics
and natural-language-processing research. Such formalisms can be thought
of by analogy to context-free grammars as generalizing the notion of non-
terminal symbol from a finite domain of atomic elements to a possibly in-
finite domain of directed graph structures of a certain sort. Unfortunately,
in moving to an infinite nonterminal domain, standard methods of parsing
may no longer be applicable to the formalism. Typically, the problem man-
ifests itself as gross inefficiency or even nontermination of the algorithms.
In this paper, we discuss a solution to the problem of extending parsing
algorithms to formalisms with possibly infinite nonterminal domains, a so-
lution based on a general technique we call restriction. As a particular
example of such an extension, we present a complete, correct, terminating
extension of Earley’s algorithm that uses restriction to perform top-down
filtering. Our implementation of this algorithm demonstrates the drastic
elimination of chart edges that can be achieved by this technique. Finally,
we describe further uses for the technique—including parsing other gram-
mar formalisms, including definite-clause grammars; extending other pars-
ing algorithms, including LR methods and syntactic preference modeling
algorithms; and efficient indexing.

3.1 Introduction

Grammar formalisms based on the encoding of grammatical information
in complex-valued feature systems enjoy some currency both in linguistics
and natural-language-processing research. Such formalisms can be thought
of by analogy to context-free grammars as generalizing the notion of non-
terminal symbol from a finite domain of atomic elements to a possibly
infinite domain of directed graph structures of a certain sort. Many of the
surface-based grammatical formalisms explicitly defined or presupposed in
linguistics can be characterized in this way—e.g., lexical-functional gram-
mar {LFG) [6], generalized phrase structure grammar {GPSG)} [5], even
categorial systems such as Montague grammar [11] and Ades/Steedman
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grammar [I]—as can several of the grammar formalisms being used in
natural-language processing research—e.g., definite clause grammar (DCG)
[12], and PATR-II [17].

Unfortunately, in moving to an infinite nonterminal domain, standard
methods of parsing may no longer be applicable to the formalism. For in-
stance, the application of techniques for preprocessing of grammars in order
to gain efficiency may fail to terminate, as in left-corner and LR algorithms.
Algorithms performing top-down prediction (e.g. top-down backtrack pars-
ing, Earley’s algorithm) may not terminate at parse time. Implementing
backtracking regimens—useful for instance for generating parses in some
particular order, say, in order of syntactic preference—is in general difficult
when LR-style and top-down backtrack techniques are eliminated.

In this paper, we discuss a solution to the problem of extending pars-
ing algorithms to formalisms with possibly infinite nonterminal domains, a
solution based on an operation we call restriction. In Section 3.2, we sum-
marize traditional proposals for solutions and problems inherent in them
and propose an alternative approach to a solution using restriction. In Sec-
tion 3.3, we present some technical background including a brief description
of the PATR-II formalism—which is used as the formalism interpreted by
the parsing algorithms—and a formal definition of restriction for PATR-II’s
nonterminal domain. In Section 3.4, we develop a correct, complete and ter-
minating extension of Earley’s algorithm for the PATR-II formalism using
the restriction notion. Readers uninterested in the technical details of the
extensions may want to skip these latter two sections, referring instead to
Section 3.4.1 for an informal overview of the algorithms. Finally, in Section
3.5, we discuss applications of the particular algorithm and the restriction
technique in general.

3.2 Traditional Solutions and an Alterna-
tive Approach '

Problems with efficiently parsing formalisms based on potentially infinite
nonterminal domains have manifested themselves in many different ways.
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Traditional solutions have involved limiting in some way the class of gram-
mars that can be parsed.

3.2.1 Limiting the Formalism

The limitations can be applied to the formalism by, for instance, adding
a context-free “backbone.” H we require that a context-free subgrammar
be implicit in every grammar, the subgrammar can be used for parsing
and the rest of the grammar used as a filter during or after parsing. This
solution has been recommended for functional unification grammars (FUG)
by Martin Kay [7]; its legacy can be seen in the context-free skeleton of
LFG, and the Hewlett-Packard GPSG system [4], and in the caé feature
requirement in PATR-II that is described below.

However, several problems inhere in this solution of mandating a
context-free backbone. First, the move from context-free to complex-
feature-based formalisms was motivated by the desire to structure the no-
tion of nonterminal. Many analyses take advantage of this by eliminating
mention of major category information from particular rules? or by struc-
turing the major category itself (say into binary N and V features plus a bar
level-feature as in X-based theories). Forcing the primacy and atomicity of
major category defeats part of the purpose of structured category systems.

Second, and perhaps more critically, because only certain of the infor-
mation in a rule is used to guide the parse, say major category information,
only such information can be used to filter spurious hypotheses by top-down
filtering. Note that this problem occurs even if filtering by the rule infor-
mation is used to eliminate at the earliest possible time constituents and
partial constituents proposed during parsing (as is the case in the PATR-
II implementation and the Earley algorithm given below; cf. the Xerox
LFG system). Thus, if information about subcategorization is left out of
the category information in the context-free skeleton, it cannot be used to
eliminate prediction edges. For example, if we find a verb that subcatego-
rizes for a noun phrase, but the grammar rules allow postverbal NPs, PPs,

2See, for instance, the coordination and copular “be” analyses from GPSG {5|, the nested
VP analysis used in some PATR-II grammars [19}, or almost all categorial analyses, in
which general rules of combination play the role of specific phrase-structure rules.
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Ss, VPs, and so forth, the parser will have no way to eliminate the building
of edges corresponding to these categories. Only when such edges attempt
to join with the V will the inconsistency be found. Similarly, if information
about filler-gap dependencies is kept extrinsic to the category information,
as in a slash category in GPSG or an LFG annotation concerning a match-
ing constituent for a {t specification, there will be no way to keep from
hypothesizing gaps at any given vertex. This “gap-proliferation” problem
has plagued many attempts at building parsers for grammar formalisms in
this style.

In fact, by making these stringent requirements on what information
is used to guide parsing, we have to a certain extent thrown the baby
out with the bathwater. These formalisins were intended to free us from
the tyranny of atomic nonterminal symbols, but for good performance,
we are forced toward analyses putting more and more information in an
atomic category feature. An example of this phenomenon can be seen in
the author’s paper on LR syntactic preference parsing [18]. Because the
LALR table building algorithm does not in general terminate for complex-
feature-based grammar formalisms, the grammar used in that paper wasa
simple context-free grammar with subcategorization and gap information
placed in the atomic nonterminal symbol.

3.2.2 Limiting Grammars and Parsers

On the other hand, the grammar formalism can be left unchanged, but
particular grammars developed that happen not to succumb to the prob-
lems inherent in the general parsing problem for the formalism. The solu-
tion mentioned above of placing more information in the category symbol
falls into this class. Unpublished work by Kent Wittenburg and by Robin
Cooper has attempted to solve the gap proliferation problem using special
grammars. ' ~

In building a general tool for grammar testing and debugging, however,
we would like to commit as little as possible to a particular grammar or style
of grammar.® Furthermore, the grammar designer should not be held down

3See [16] for further discussion of this matter.
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in building an analysis by limitations of the algorithms. Thus a solution
requiring careful crafting of grammars is inadequate.

Finally, specialized parsing algorithms can be designed that make use of
information about the particular grammar being parsed to eliminate spuri-
ous edges or hypotheses. Rather than using a general parsing algorithm on
a limited formalism, Ford, Bresnan, and Kaplan (3] chose a specialized al-
gorithm working on grammars in the full LFG formalism to model syntactic
preferences. Current work at Hewlett-Packard on parsing recent variants
of GPSG seems to take this line as well. '

Again, we feel that the separation of burden is inappropriate in such
an attack, especially in a grammar-development context. Coupling the
grammar design and parser design problems in this way leads to the lin-
guistic and technological problems becoming inherently mixed, magnifying
the difficulty of writing an adequate grammar/parser system. -

3.2.3 An Alternative: Using Restriction

Instead, we would like a parsing algorithm that placed no restraints on the
grammars it could handle as long as they could be expressed within the
intended formalism. Still, the algorithm should take advantage of that part.
of the arbitrarily large amount of information in the complex-feature struc-
tures that is significant for guiding parsing with the particular grammar.
One of the aforementioned solutions is to require the grammar writer to
put all such significant information in a special atomic symbol—i.e., man-
date a context-free backbone. Another is to use all of the feature structure
information—but this method, as we shall see, inevitably leads to nonter-
minating algorithms.

A compromise is to parameterize the parsing algorithm by a small
amount of grammar-dependent information that tells the algorithm which
of the information in the feature structures is significant for guiding the
parse. That is, the parameter determines how to split up the infinite non-
terminal domain into a finite set of equivalence classes that can be used for
parsing. By doing so, we have an optimal compromise: Whatever part of
the feature structure is significant we distinguish in the equivalence classes
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by setting the parameter appropriately, so the information is used in pars-
ing. But because there are only a finite number of equivalence classes,
parsing algorithms guided in this way will terminate.

The technique we use to form equivalence classes is restrictson, which
involves taking a quotient of the domain with respect to a restrictor. The
restrictor thus serves as the sole repository of grammar-dependent informa-
tion in the algorithm. By tuning the restrictor, the set of equivalence classes
engendered can be changed, making the algorithm more or less efficient at
guiding the parse. But independent of the restrictor, the algorithm will be
correct, since it is still doing parsing over a finite domain of “nonterminals,”
namely, the elements of the restricted domain.

This idea can be applied to solve many of the problems engendered
by infinite nonterminal domains, allowing preprocessing of grammars as
required by LR and L.C algorithms, allowing top-down filtering or prediction
as in Earley and top-down backtrack parsing, guaranteeing termination,
etc.

3.3 Technical Preliminaries

Before discussing the use of restriction in parsing algorithms, we present
some technical details, including a brief introduction to the PATR-II gram-
mar formalism, which will serve as the grammatical formalism that the pre-
sented algorithms will interpret. PATR-II is a simple grammar formalism
that can serve as the least common denominator of many of the complex-
feature-based and unification-based formalisms prevalent in linguistics and
computational linguistics. As such it provides a good testbed for describing
algorithms for complex-feature-based formalisms.
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3.3.1 The PATR-II Nonterminal Domain

The PATR-II nonterminal domain is a lattice of directed, acyclic, graph
structures (dags). Dags can be thought of as similar to the reentrant
f-structures of LFG or functional structures of FUG, and we will use the
bracketed notation associated with these formalisms for them. For example,
the following is a dag (Do) in this notation, with reentrancy indicated with
coindexing boxes:

a: :-b: c]
e 9[1: (o h]]}

diolis [ @]
k: 1

Dags come in two varieties, complez (like the one above) and atomic
{like the dags h and ¢ in the example). Complex dags can be viewed
as partial functions from labels to dag values, and the notation D(I) will
therefore denote the value associated with the label ! in the dag D. In
the same spirit, we can refer to the domain of a dag (dom(D)). A dag
with an empty domain is often called an emply dag or varsable. A path in
a dag is a sequence of label names (notated, e.g., {d e f)), which can be
used to pick out a particular subpart of the dag by repeated application
(in this case, the dag [¢g : k]). We will extend the notation D(p) in the
obvious way to include the subdag of D picked out by a path p. We will
also occasionally use the square brackets as the dag constructor function,
so that [f : D] where D is an expression denoting a dag will denote the dag
whose f feature has value D.

3.3.2 Subsumption and Unlification

There is a natural lattice structure for dags based on subsumption—an
ordering on dags that roughly corresponds to the compatibility and relative

iThe reader is referred to earlier works [19,13] for more detailed discussions of dag
structures.
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specificity of information contained in the dags. Intuitively viewed, a dag
D subsumes a dag D' (notated D T D) if D contains a subset of the
information in (i.e., is more general than) D'.

Thus variables subsume all other dags, atomic or complex, because as
the trivial case, they contain no information at all. A complex dag D
subsumes a complex dag D' if and only if D({} C D'(l) for all | € dom(D)
and D'(P) = D'(q) for all paths p and ¢ such that D(p) = D(g). An atomic
dag neither subsumes nor is subsumed by any different atomic dag.

For instance, the following subsumption relations hold:

[ 1E[d: e]E[ [b: c]] Dy

f

Finally, given two dags D' and D", the unification of the dags is the most
general dag D such that D' C D and D" C D. We notate this D = D'UD".

The following examples illustrate the notion of unification:

o prdula: ] =[5 P

|-t

The unification of two dags is not always well-defined. In the cases
where no unification exists, the unification is said to fasl. For example the
following pair of dags fail to unify with each other:

3 o[z big]-

[a: [b:

44



3.3.3 Restriction in the PATR-II Nonterminal Do-
main

Now, consider the notion of restriction of a dag, using the term almost in
its technical sense of restricting the domain of a function. By viewing dags
as partial functions from labels to dag values, we can envision a process of
restricting the domain of this function to a given set of labels. Extending
this process recursively to every level of the dag, we have the concept of
restriction used below. Given a finite specification ¢ (called a restrictor)
of what the allowable domain at each node of a dag is, we can define a
functional, }, that yields the dag restricted by the given restrictor.

Formally, we define restriction as follows. Given a relation ® between
paths and labels, and a dag D, we define D} to be the most specific
dag D' € D such that for every path p either D'(p) is undefined, or D'(p)
is atomic, or for every I € dom(D'(p)), p®l. That is, every path in the
restricted dag is either undefined, atomic, or specifically allowed by the
restrictor. ‘

The restriction process can be viewed as putting dags into equivalence
classes, each equivalence class being the largest set of dags that all are
restricted to the same dag (which we will call its canonical member). It
follows from the definition that in general D}® C D. Finally, if we disallow
infinite relations as restrictors (i.e., restrictors must not allow values for an
infinite number of distinct paths) as we will do for the remainder of the
discussion, we are guaranteed to have only a finite number of equivalence
classes.

Actuazlly, in the sequel we will use a particularly simple subclass of
restrictors that are generable from sets of paths. Given a set of paths s,
we can define ® such that p®! if and only if p is a prefix of some p' € s.
Such restrictors can be understood as “throwing away” all values not lying
on one of the given paths. This subclass of restrictors is sufficient for most
applications. However, the algorithms that we will present apply to the
general class as well.

Using our previous example, consider a restrictor ®; generated from the
set of paths {{a &), {(d e f),{d  j f)}. That is, p®! for all p in the listed
paths and all their prefixes. Then given the previous dag Dy, Dy} is
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[ a: :b: c]
[e: D[ f: [j]
i [ B

Restriction has thrown away all the information except the direct values
of {a b), {d e f),and (d ¢ j f). (Note however that because the values for
paths such as {d e f g) were thrown away, (Do}®,)({d e f)) is a variable.)

3.3.4 PATR-II Grammar Rules

PATR-II rules describe how to combine a sequence of constituents,
Xi,..., X, to form a constituent Xy, stating mutual constraints on the
dags associated with the n + 1 constituents as unifications of various parts
of the dags. For instance, we might have the following rule:

Xo — X1X2 :
(Xp cat) =5
(X; cat) = NP
(Xe cat) =VP
(Xi

agreement) = (X, agreement).

By notational convention, we can eliminate unifications for the special fea-
ture cat (the atomic major category feature) recording this information
implicitly by using it in the “name” of the constituent, e.g.,

§— NP VP
(NP agreement) = (VP agreement).
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If we require that this notational convention always be used (in so do-
ing, guaranteeing that each constituent have an atomic major category
associated with it}, we have thereby mandated a context-free backbone to
the grammar, and can then use standard context-free parsing algorithms
to parse sentences relative to grammars in this formalism. Limiting to a
context-free-based PATR-II is the solution that previous implementations
have incorporated.

Before proceeding to describe parsing such a context-free-based PATR-
II, we make one more purely notational change. Rather than associating
with each grammar rule a set of unifications, we instead associate a dag
that incorporates all of those unifications implicitly, i.e., a rule is associated
with a dag D, such that for all unifications of the form p = g in the rule,
D,(p) = D,{g). Similarly, unifications of the form p = a where a is atomic
would require that D,.(p) = a. For the rule mentioned above, such a dag
would be '

[ X, : cat: S ]
[ cat: NP
X | agreement : ]
[ cat: VP
| Xz | agreement : [ A

Thus a rule can be thought of as an ordered pair {P, D) where P is a pro-
duction of the form X, — X;---X, and D is a dag with top-level features
Xo,..., X, and with atomic values for the cat feature of each of the top-
level subdags. The two notational conventions—using sets of unifications
instead of dags, and putting the caf feature information implicitly in the
names of the constituents—allew us to write rules in the more compact and
familiar format above, rather than this final cumbersome way presupposed
by the algorithm. \
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3.4 Using Restriction to Extend Earley s Al-
gorithm for PATR-II

We now develop a concrete example of the use of restriction in parsing by
extending Earley’s algorithm to parse grammars in the PATR-II formalism
just presented.

3.4.1 An Overview of the Algorithms

Earley’s algorithm is a bottom-up parsing algorithm that uses top-down
prediction to hypothesize the starting points of possible constituents. Typ-
ically, the prediction step determines which calegories of constituent can
start at a given point in a sentence. But when most of the information is
not in an atomic category symbol, such prediction is relatively useless and
many types of constituents are predicted that could never be involved in a
completed parse. This standard Earley’s algorithm is presented in Section
3.4.2.

By extending the algorithm so that the prediction step determines which
dags can start at a given point, we can use the information in the features
to be more precise in the predictions and eliminate many hypotheses. How-
ever, because there are a potentially infinite number of such feature struc-
tures, the prediction step may never terminate. This extended Earley’s
algorithm is presented in Section 3.4.3.

We compromise by having the prediction step determine which restricfed
dags can start at a given point. If the restrictor is chosen appropriately,
this can be as constraining as predicting on the basis of the whole feature
structure, yet prediction is guaranteed to terminate because the domain
of restricted feature structures is finite. This final extension of Earley’s
algorithm is presented in Section 3.4.4.

3.4.2 Parsing a Context-Free-Based PATR-II

We start with the Earley algorithm for context-free-based PATR-II on
which the other algorithms are based. The algorithm is described in a
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chart-parsing incarnation, vertices numbered from 0 to n for an n-word
sentence w; «--w,. An item of the form [A,{;A — .8, D] designates an
edge in the chart from vertex h to ¢ with dotted rule A — a.f and dag D.

The chart is initialized with an edge [0,0,X; — .a, D] for each rule
(Xo — a, D} where D({Xp cat)) = S.

For each vertex { do the following steps until no more items can be added:

Predictor step: For each item ending at i of the form [h,i, X, —
a.X;0,D] and each rule of the form (X, — -+, E) such that
E({X; cat)) = D{{X; cat)), add an edge of the form [7,7, Xy — .7, E]
if this edge is not subsumed by another edge.

Informally, this involves predicting top-down all rules whose left-hand;
side category matches the category of some constituent being looked

for.

Completer step: For each item of the form [k,7, Xy — a., D] and each
item of the form [¢,h, Xo — B.X;v, E] add the item [g,7, X, —
BX;.v, EU[X; : D(Xo)]] if the unification succeeds® and this edge
is not subsumed by another edge.®

Informally, this involves forming a new partial phrase whenever the
category of a constituent needed by one partial phrase matches the cat-
egory of a compleled phrase and the dag assoctated with the completed
phrase can be unified sn appropriately.

Scanner step: If 1 # 0 and w; = g, then for all items [h,7 — 1, X; —
a.af, D] add the item [h,{, Xy — aa.§, D).

Informally, this involves allowing lezical ttems to be inserted tnto par-
tial phrases.

“Note that this unification will fail if D{{X, cat}} # E({X; cat})) and no edge will be
added, i.e., if the subphrase is not of the appropriate category for insertion into the
phrase being built.

$One edge subsumes another edge if and only if the first three elements of the edges are
identical and the fourth element of the first edge subsumes that of the second edge.
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Notice that the Predictor Step in particular assumes the availability of the
cat feature for top-down prediction. Consequently, this algorithm applies
only to PATR-II with a context-free base.

3.4.3 Removing the Context-Free Base: An Inade-
quate Extension :

A first attempt at extending the algorithm to make use of more than just
a single atomic-valued cat feature (or less if no such feature is mandated)
is to change the Predictor Step so that instead of checking the predicted
rule for a left-hand side that matches its cat feature with the predicting
subphrase, we require that the whole left-hand-side subdag unifies with the
subphrase being predicted from. Formally, we have

Predictor step: For each item ending at ¢ of the form [Ah,1,X; —
a.X;/3, D] and each rule of the form {X, — +, £}, add an edge of
the form [i,7, Xy — .7, EU [X, : D(X;)]] if the unification succeeds
and this edge is not subsumed by another edge.

This step predicts top-down all rules whose left-hand side matches the
dag of some constituent being looked for.

Completer step: As before.

Scanner step: As before.

However, this extension does not preserve termination. Consider a
“counting” grammar that records in the dag the number of terminals in
the string.”

S—T:
| (Sf)=a
T, — T, A:
ALY =({T2/]).

7Similar problems occur in natural language grammars when keeping fsts of, say, sub-
categorized constituents or gaps to be found.
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S — A.
A—a.

Initjally, the S — T rule will yield the edge

02
[0101 XO_" 'XI: [

cat S]

fal

which in turn causes the Prediction step to give

[01 O: XO - 'X1X21
yielding in turn
.Xo .
. [0,0,J o — ..Xl.Xz-, XI :
Xz :

and so forth ad infinitum.

XQZ

Xg:

XII
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3.4.4 Removing the Context-Free Base: An Ade-
quate Extension

What is needed is a way of “forgetting” some of the structure we are using
for top-down prediction. But this is just what restriction gives us, since a
restricted dag always subsumes the original, i.e., it has strictly less infor-
mation. Taking advantage of this property, we can change the Prediction
Step to restrict the top-down information before unifying it into the rule’s
dag.

Predictor step: For each item ending at ¢ of the form [h,{, X, —
a.X;f, D] and each rule of the form (X, — =, E}, add an edge of
the form [, ¢, Xo — .7, EU(D(X;)}®)] if the unification succeeds and
this edge is not subsumed by another edge.

This step predicts top-down all rules whose left-hand side matches the
restricted dag of some constituent being looked for.

Completer step: As before.

Scanner step: As before.

This algorithm on the previous grammar, using a restrictor that allows
through only the cat feature of 2 dag, operates as before, but predicts the
first time around the more general edge:

[ . |eat: T ]
%o |71y
- Y t: T
[0,0,Xo 'AIXZs X1I [;a: [f: [ﬂ]] ]
X, [cat: A]

Anocther round of prediction yields this same edge so the process termi-
nates immediately. duck Because the predicted edge is more general than
(i.e., subsumes) all the infinite number of edges it replaced that were pre-
dicted under the nonterminating extension, it preserves completeness. On
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the other hand, because the predicted edge is not more general than the
rule itself, it permits no constituents that violate the constraints of the
rule; therefore, it preserves correciness. Finally, because restriction has a
finite range, the prediction step can only occur a finite number of times be-
fore building an edge identical to one already built; therefore, it preserves
terminalion.

3.5 Applications

3.5.1 Some Examples of the Use of the Algorithm

The algorithm just described has been implemented and incorporated into
the PATR-II Experimental System at SRI International, a grammar devel-
opment and testing environment for PATR-II grammars written in Zetalisp
for the Symbolics 3600.,

The following table gives some data suggestive of the effect of the restric-
tor on parsing efficiency. It shows the total number of active and passive
edges added to the chart for five sentences of up to eleven words using four
different restrictors. The first allowed only category information to be used
in prediction, thus generating the same behavior as the unextended Earley’s
algorithm. The second added subcategorization information in addition to
the category. The third added filler-gap dependency information as well so
that the gap proliferation problem was removed. The final restrictor added
verb form information. The last column shows the percentage of edges that
were eliminated by using this final restrictor.

Prediction %
Sentence | cat t!— subcat ‘ + gap L+ form || elim.
1 33 33 20 16 92
2 85 50 29 21 75
3 219 124 72 45 79
4 319 319 98 71 78
5 812 al6 157 100 B8
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Several facts should be kept in mind about the data above. First, for
sentences with no Wh-movement or relative clauses, no gaps were ever
predicted. In other words, the top-down filtering is in some sense maximal
with respect to gap hypothesis. Second, the subcategorization informasion
used in top-down filtering removed all hypotheses of constituents except
for those directly subcategorized for. Finally, the grammar used contained
constructs that would cause nontermination in the unrestricted extension
of Earley’s algorithm.

3.5.2 Other Applications of Restriction

This technique of restriction of complex-feature structures into a finite set
of equivalence classes can be used for a wide variety of purposes.

First, parsing algorithms such as the above can be modified for use
by grammar formalisms other than PATR-IL. In particular, definite-clause
grammars are amenable to this technique, and it can be used to extend the
Earley deduction of Pereira and Warren [15]. Pereira has used a similar
technique to improve the efficiency of the BUP (bottom-up left-corner)
parser [10] for DCG. LFG and GPSG parsers can make use of the top-
down filtering device as well. IFUG parsers might be built that do not
require a context-free backbone. -

Second, restriction can be used to enhance other parsing algorithms.
For example, the ancillary function to compute LR closure—which, like
the Earley algorithm, either does not use feature information, or fails to
terminate——can be modified in the same way as the Earley predictor step
to terminate while still using significant feature information. LR parsing
techniques can thereby be used for efficient parsing of complex-feature-
based formalisms. More speculatively, schemes for scheduling LR parsers
to yield parses in preference order might be modified for complex-feature-
based formalisms, and even tuned by means of the restrictor.

Finally, restriction can be used in areas of parsing other than top-down
prediction and filtering. For instance, in many parsing schemes, edges
are indexed by a category symbol for efficient retrieval. In the case of
Earley’s algorithm, active edges can be indexed by the category of the
constituent following the dot in the dotted rule. However, this again forces
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the primacy and atomicity of major category information. Once again,
restriction can be used to solve the problem. Indexing by the restriction
of the dag associated with the need permits efficient retrieval that can be
tuned to the particular grammar, yet does not affect the completeness or
correctness of the algorithm. The indexing can be done by discrimination
nets, or specialized hashing functions akin to the partial-match retrieval
techniques designed for use in Prolog implementations [22].

3.6 Conclusion

We have presented a general technique of restriction with many applications
in the area of manipulating complex-feature-based grammar formalisms.
As a particular example, we presented a complete, correct, terminating
extension of Earley’s algorithm that uses restriction to perform top-down
filtering. Our implementation demonstrates the drastic elimination of chart
edges that can be achieved by this technique. Iinally, we described further
uses for the technique—including parsing other grammar formalisms, in-
cluding definite-clause grammars; extending other parsing algorithms, in-
cluding LR methods and syntactic preference modeling algorithms; and
efficient indexing.

We feel that the restriction technique has great potential to make in-
creasingly powerful grammar formalisms computationally feasible.
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